Missile guidance with assisted deep reinforcement learning for head-on interception of maneuvering target

نویسندگان

چکیده

Abstract In missile guidance, pursuit performance is seriously degraded due to the uncertainty and randomness in target maneuverability, detection delay, environmental noise. many methods, accurately estimating acceleration of or time-to-go needed intercept maneuvering target, which hard an environment with uncertainty. this paper, we propose assisted deep reinforcement learning (ARL) algorithm optimize neural network-based guidance controller for head-on interception. Based on relative velocity, distance, angle, ARL can control achieve large terminal angle. To reduce influence uncertainty, predicts target’s as auxiliary supervised task. The task improves ability agent extract information from observations. exploit agent’s good trajectories, presents Gaussian self-imitation make mean action distribution approach actions. Compared vanilla learning, exploration continuous control. Simulation results validate that outperforms traditional methods proximal policy optimization higher hit rate larger angle simulation noise, maneuverable target.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cooperative guidance laws for maneuvering target interceptions

This study addresses the design of cooperative guidance laws for interceptor missiles. A polyhedric bounded-error estimation of the target position is employed, based only on the assumption that the target acceleration and measurement noise remain within known bounds. This prediction of the maneuvering target trajectory is then incorporated into a model predictive control scheme to derive the m...

متن کامل

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

the impact of computer-assisted language learning on achievement motivation of high school students

چکیده انگیزه دلیل اصلی رفتارهای ما است. به نظر می رسد انگیزه جزء جدایی ناپذیر فرایند یادگیری باشد. ارزش ذاتی موفقیت تمایل به پیشرفت را در یادگیرنده ایجاد میکند. به عبارت ساده این تمایل انگیزه پیشرفت نامیده میشود. انگیزه پیشرفت را میتوان در احساس یادگیرنده هنگام چالش با درس های مدرسه، لذت انجام فعالیت درسی، یا حس کشف پاسخ مشاهده کرد.حتی ممکن است انگیزه پیشرفت را در تلاش یادگیرنده برای جلب تایید...

Integrated fuzzy guidance law for high maneuvering targets based on proportional navigation guidance

An integrated fuzzy guidance (IFG) law for a surface to air homing missile is introduced. The introduced approach is a modification of the well-known proportional navigation guidance (PNG) law. The IFG law enables the missile to approach a high maneuvering target while trying to minimize control effort as well as miss-distance in a two-stage flight. In the first stage, while the missile is far ...

متن کامل

Vision-Based Adaptive Guidance Law for Intercepting a Maneuvering Target

This paper introduces an adaptive guidance law for intercepting a maneuvering target using information from an imaging seeker. The relative missile-target kinematics is represented in the line-of-sight (LOS) frame and the image information instead of the relative range is introduced to formulate the interception problem as an adaptive control problem with an unknown control coefficient. Conside...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex & Intelligent Systems

سال: 2021

ISSN: ['2198-6053', '2199-4536']

DOI: https://doi.org/10.1007/s40747-021-00577-6